Copied to
clipboard

?

G = C42.259C23order 128 = 27

120th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.259C23, C4⋊C849C22, (C4×C8)⋊53C22, C24.77(C2×C4), C8⋊C455C22, (C4×M4(2))⋊30C2, (C2×C8).398C23, (C2×C4).640C24, C42.203(C2×C4), C4⋊M4(2)⋊32C2, C42⋊C2.29C4, C23.99(C22×C4), C4.66(C42⋊C2), C2.10(Q8○M4(2)), C22⋊C8.137C22, C24.4C4.23C2, (C2×C42).754C22, C22.168(C23×C4), (C23×C4).522C22, (C22×C4).911C23, C42.7C2219C2, C42⋊C2.289C22, C22.38(C42⋊C2), (C2×M4(2)).342C22, (C2×C4⋊C4).68C4, C4⋊C4.216(C2×C4), C4.291(C2×C4○D4), C22⋊C4.67(C2×C4), (C2×C22⋊C4).45C4, (C2×C4).678(C4○D4), (C2×C4).256(C22×C4), (C22×C4).334(C2×C4), C2.40(C2×C42⋊C2), (C2×C42⋊C2).57C2, SmallGroup(128,1653)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.259C23
C1C2C4C2×C4C22×C4C2×C42C2×C42⋊C2 — C42.259C23
C1C22 — C42.259C23
C1C2×C4 — C42.259C23
C1C2C2C2×C4 — C42.259C23

Subgroups: 284 in 196 conjugacy classes, 132 normal (14 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×4], C4 [×10], C22, C22 [×2], C22 [×12], C8 [×8], C2×C4 [×2], C2×C4 [×14], C2×C4 [×14], C23, C23 [×2], C23 [×4], C42 [×8], C22⋊C4 [×8], C4⋊C4 [×8], C2×C8 [×8], M4(2) [×8], C22×C4 [×2], C22×C4 [×8], C22×C4 [×4], C24, C4×C8 [×4], C8⋊C4 [×4], C22⋊C8 [×8], C4⋊C8 [×8], C2×C42 [×2], C2×C22⋊C4 [×2], C2×C4⋊C4 [×2], C42⋊C2 [×8], C2×M4(2) [×4], C23×C4, C4×M4(2) [×2], C24.4C4 [×2], C4⋊M4(2) [×2], C42.7C22 [×8], C2×C42⋊C2, C42.259C23

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C4○D4 [×4], C24, C42⋊C2 [×4], C23×C4, C2×C4○D4 [×2], C2×C42⋊C2, Q8○M4(2) [×2], C42.259C23

Generators and relations
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1b2, dad=ab2, ae=ea, bc=cb, bd=db, be=eb, dcd=a2b2c, ece=b2c, de=ed >

Smallest permutation representation
On 32 points
Generators in S32
(1 19 27 14)(2 11 28 24)(3 21 29 16)(4 13 30 18)(5 23 31 10)(6 15 32 20)(7 17 25 12)(8 9 26 22)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 32)(4 26)(6 28)(8 30)(9 22)(10 14)(11 24)(12 16)(13 18)(15 20)(17 21)(19 23)
(1 31)(2 28)(3 25)(4 30)(5 27)(6 32)(7 29)(8 26)(9 22)(10 19)(11 24)(12 21)(13 18)(14 23)(15 20)(16 17)

G:=sub<Sym(32)| (1,19,27,14)(2,11,28,24)(3,21,29,16)(4,13,30,18)(5,23,31,10)(6,15,32,20)(7,17,25,12)(8,9,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,32)(4,26)(6,28)(8,30)(9,22)(10,14)(11,24)(12,16)(13,18)(15,20)(17,21)(19,23), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17)>;

G:=Group( (1,19,27,14)(2,11,28,24)(3,21,29,16)(4,13,30,18)(5,23,31,10)(6,15,32,20)(7,17,25,12)(8,9,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,32)(4,26)(6,28)(8,30)(9,22)(10,14)(11,24)(12,16)(13,18)(15,20)(17,21)(19,23), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17) );

G=PermutationGroup([(1,19,27,14),(2,11,28,24),(3,21,29,16),(4,13,30,18),(5,23,31,10),(6,15,32,20),(7,17,25,12),(8,9,26,22)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,32),(4,26),(6,28),(8,30),(9,22),(10,14),(11,24),(12,16),(13,18),(15,20),(17,21),(19,23)], [(1,31),(2,28),(3,25),(4,30),(5,27),(6,32),(7,29),(8,26),(9,22),(10,19),(11,24),(12,21),(13,18),(14,23),(15,20),(16,17)])

Matrix representation G ⊆ GL6(𝔽17)

1300000
1340000
0001600
001000
0000016
000010
,
100000
010000
004000
000400
000040
000004
,
490000
4130000
000010
000001
004000
000400
,
100000
1160000
001000
0001600
000010
0000016
,
100000
010000
001000
000100
0000160
0000016

G:=sub<GL(6,GF(17))| [13,13,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,4,0,0,0,0,9,13,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16] >;

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4N4O···4T8A···8P
order1222222244444···44···48···8
size1111224411112···24···44···4

44 irreducible representations

dim11111111124
type++++++
imageC1C2C2C2C2C2C4C4C4C4○D4Q8○M4(2)
kernelC42.259C23C4×M4(2)C24.4C4C4⋊M4(2)C42.7C22C2×C42⋊C2C2×C22⋊C4C2×C4⋊C4C42⋊C2C2×C4C2
# reps12228144884

In GAP, Magma, Sage, TeX

C_4^2._{259}C_2^3
% in TeX

G:=Group("C4^2.259C2^3");
// GroupNames label

G:=SmallGroup(128,1653);
// by ID

G=gap.SmallGroup(128,1653);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,723,100,2019,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a*b^2,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=a^2*b^2*c,e*c*e=b^2*c,d*e=e*d>;
// generators/relations

׿
×
𝔽